Home » Skripte zur Mathematik und ihrer Didaktik » Graumann, G., & Karzel, H.: Gruppentheoretische Begründung Metrischer Ebenen

Graumann, G., & Karzel, H.: Gruppentheoretische Begründung Metrischer Ebenen

 

Ausarbeitung der von Helmut Karzel im WS 1962/63 an der Universität Hamburg gehaltenen Vorlesung mit Ergänzungen aus dem Proseminar des SS 1963.

Unter der Leitung von Prof. Karzel ausgearbeitet von Günter Graumann. Von Prof. Dr. Günter Graumann überarbeitete und ergänzte Fassung Bielefeld 2017

Münster: WTM-Verlag 2017. Ca. 100 Seiten, DIN A5.

978-3-95987-057-3 print 14,90 €

978-3-95987-058-0 E-Book 13,90 €

Für Bestellungen bei edition-buchshop hier klicken

Bestellungen direkt an kontakt@wtm-verlag.de

In der elementaren euklidischen Geometrie spielen die kongruenten Abbildungen eine wichtige Rolle. Bei ihrer Hintereinanderausführung ist dabei der Dreispiegelungssatz die wichtigste Aussage. Innerhalb der synthetischen Geometrie hat sich gezeigt, dass der Dreispiegelungssatz bis auf eine Reichhaltigkeitsforderung als Axiom genommen alleine ausreicht, um alle ebenen metrischen Geometrien über einem kommutativen Körper zu begründen. Obgleich diese Erkenntnis schon vor fünfzig Jahre gewonnen wurde, ist sie heute immer noch hochaktuell.

Das Buch wendet sich an interessierte Mathematiker und Mathematikerinnen sowie Studierende der Mathematik. Insbesondere ist es geeignet für Lehrende und Studierende des Lehramts an Gymnasien als mathematischer Hintergrund der Abbildungsgeometrie wie sie im Geometrieunterricht in der Sekundarstufe I und in der Vektorgeometrie der Sekundarstufe II vorkommt.