Home » Festschriften » Stein, M. (ed.): A Life’s Time for Mathematics Education and Problem Solving

Stein, M. (ed.): A Life’s Time for Mathematics Education and Problem Solving

Festschrift on the Occasion of András Ambrus’ 75th  Birthday

Münster: WTM-Verlag 2017. Ca. 480 Seiten, DIN A5.

978-3-95987-063-4 print 43,90 €

978-3-95987-064-1 E-Book 39,90 €

https://doi.org/10.37626/GA9783959870641.0

Für Bestellungen bei edition-buchshop hier klicken

Bestellungen direkt an kontakt@wtm-verlag.de

After an introduction by Benjamin Rott, this Festschrift on the occasion of András Ambrus’ 75th birthday comprises articles by the following authors:

  • Krisztina Barczi-Veres
  • Laurinda Brown
  • Regina Bruder
  • Olive Chapman
  • Marianna Ciosek
  • Bronislaw Czarnocha
  • Lothar Flade & Manfred Pruzina
  • Torsten Fritzlar, Maria Kötters & Karin Richter
  • Gunnar Gjone
  • Stefan Götz
  • Günter Graumann
  • Olga Graumann
  • Ján Gunčaga & Péter Körtesi
  • Lenni Haapasalo
  • Frank Heinrich
  • Eszter Kónya & Gyöngyi Szanyi
  • Ana Kuzle
  • Anu Laine & Maija Ahtee
  • Leong Yew Hoong, Romina Ann Yap, Toh Tin Lam, Tay Eng Guan, Quek Khiok Seng, Toh Pee Choon, Teo Kok Ming & Ho Weng Kin
  • Shuk-kwan S. Leung
  • Nicolina A. Malara
  • John Mason
  • Jarmila Novotná & Hana Moraová
  • Antoni Pardała
  • Erkki Pehkonen
  • Klára Pintér
  • Benjamin Rott
  • Alan H. Schoenfeld
  • Fritz Schweiger
  • Johann Sjuts
  • Jorge Soto-Andrade
  • Gordana Stankov
  • Martin Stein
  • John Sweller
  • David Tall, Nic Tall & Simon Tall
  • Stefan Turnau
  • Shlomo Vinner

 

Barczi-Veres, Krisztina: Solving Problems – Together. pp 11 – 21

https://doi.org/10.37626/GA9783959870641.0.01

Brown, Laurinda: Long Conversations: Budapest/Bristol Mathematics Student Teacher Links. pp 22 – 37

https://doi.org/10.37626/GA9783959870641.0.02

Bruder, Regina: The „Brain Teaser Path“ as an Approach to Problem-Solving. pp 38 – 44

https://doi.org/10.37626/GA9783959870641.0.03

Chapman, Olive: Mathematics Teachers´ Ways of Supporting Students´ Learning of Problem Solving. pp 45 – 69

https://doi.org/10.37626/GA9783959870641.0.04

Ciosek, Marianna: On Useful Strategies for Solving Open Mathematical Problems. pp 70 – 76

https://doi.org/10.37626/GA9783959870641.0.05

Czarnocha, Bronislaw: Mathematics Teaching-Research, Paulo Freire, and Mathematics for Social Justice. pp 77 – 90

https://doi.org/10.37626/GA9783959870641.0.06

Flade, Lothar; Pruzina, Manfred: Zur Kompetenz „Mathematisch argumentieren“ – Ein Blick auf Anspruch und Wirklichkeit im Wandel der Zeit. pp 91 – 106

https://doi.org/10.37626/GA9783959870641.0.07

Fritzlar, Torsten; Kötters, Maria; Richter, Karin: Exploratory and Creative Activities in Ethnomathematical Learning Environments. pp 107 – 126

https://doi.org/10.37626/GA9783959870641.0.08

Gjone, Gunnar: Mathematical Education Research. The Developments Since the 1970s- My Story. pp 127 – 137

https://doi.org/10.37626/GA9783959870641.0.09

Götz, Stefan: On the Track oft he KIEPERT-Hyperbola. pp 138 – 151

https://doi.org/10.37626/GA9783959870641.0.10

Graumann, Günter: Problem Orientation and Problem Fields for Geometry Teaching. pp 152 – 167

https://doi.org/10.37626/GA9783959870641.0.11

Graumann, Olga: Diversity as an Educational Challenge. Symmetry Teaching in a Heterogeneous Class of Primary School. pp 168 – 177

https://doi.org/10.37626/GA9783959870641.0.12

Guncaga, Ján; Körtesi, Péter: Using of History of Mathematics Education With GeoGebra. pp 178 – 186

https://doi.org/10.37626/GA9783959870641.0.13

Haapasalo, Lenni: CAMEL and HORSE – Two Metaphors of Mathematics Education. pp 187 – 199

https://doi.org/10.37626/GA9783959870641.0.14

Heinrich, Frank: Why Content Matters in Problem Solving: Strategies among Mathematics Teacher Trainees. pp 200 – 209

https://doi.org/10.37626/GA9783959870641.0.15

Kónya, Eszter; Szanyi, Gyöngyi: A Classroom Teaching Experiment on the Preparation of the Function Concept. pp 210 – 219

https://doi.org/10.37626/GA9783959870641.0.16

Kuzle, Ana: Teaching Problem Solving from Early Grades on: Different Suggestions for Educator, Teachers and Curriculum Developers. pp 220 – 231

https://doi.org/10.37626/GA9783959870641.0.17

Laine, Anu; Ahtee, Maija: Factors of Positive Emotional Atmosphere – Case Study of one Primary School Classroom. pp 232 – 241

https://doi.org/10.37626/GA9783959870641.0.18

Leong, Yew Hoong; Romina, Ann Yap; Toh, Tin Lam; Tay, Eng Guan; Quek, Khiok Seng; Toh, Pee Choon; Teo, Kok Ming; Ho, Weng Kin: Students´ Perceptions about an Undergraduate Mathematics Problem Solving Course. pp 242 – 260

https://doi.org/10.37626/GA9783959870641.0.19

Leung, Shuk-kwan S.: Teaching Problem Solving in Taiwan for Graduate Students in Institute of Education. pp 261 – 275

https://doi.org/10.37626/GA9783959870641.0.20

Malara, Nicolina A.: Research in Didactic of Algebra and Indications about Our Studies in this Field. pp 276 – 302

https://doi.org/10.37626/GA9783959870641.0.21

Mason, John: Scoping Generality: An Essential Component of Mathematical Thinking by and for All. pp 303 – 317

https://doi.org/10.37626/GA9783959870641.0.22

Novotna, Jarmila; Moraová, Hana: The Impact of Culturally Non-Standard Assignments and Didactical Contract on Pupils´ Achievement while Solving Problems. pp 318 – 327

https://doi.org/10.37626/GA9783959870641.0.23

Pardala, Antoni: The Humanisation of Mathematical Education for Pupils and Students. pp 328 – 343

https://doi.org/10.37626/GA9783959870641.0.24

Pehkonen, Erkki: Teaching Mathematics via Problem Solving. pp 344 – 354

https://doi.org/10.37626/GA9783959870641.0.25

Pintér, Klára: Activity-Based Problem Solving. pp 355 – 363

https://doi.org/10.37626/GA9783959870641.0.26

Rott, Benjamin: „Is Mathematical Knowledge Certain? – Are you Sure?“ A Fictitious Classroom Discussion. pp 364 – 369

https://doi.org/10.37626/GA9783959870641.0.27

Schoenfeld, Alan H.: Thoughts on Pólya, Problem Solving, and Where They Can Lead You. pp 370 – 377

https://doi.org/10.37626/GA9783959870641.0.28

Schweiger, Fritz: Eigenvalues. An example for Teaching Mathematics in an Expository Style. pp 378 – 384

https://doi.org/10.37626/GA9783959870641.0.29

Sjuts, Johann: Mathematical, Logical and Strategic Thinking at Thales´ Theorem. pp 385 – 392

https://doi.org/10.37626/GA9783959870641.0.30

Sota-Andrade, Jorge: Enactivistic Metaphoric Approach to Problem Solving. pp 393 – 408

https://doi.org/10.37626/GA9783959870641.0.31

Stankov, Gordana: Example for Advancement of Student´s Ability of Visualization Calculus Contens by Using GeoGebra. pp 409 – 420

https://doi.org/10.37626/GA9783959870641.0.32

Stein, Martin: Nudge and the Concept of Mathematical Learning Spaces as Learning Environments for Problem Classes. pp 421 – 435

https://doi.org/10.37626/GA9783959870641.0.33

Sweller, John: Problem-Based Learning in Mathematics and Other Areas Should Not Require Novice Learners to Attempt to Solve Complex Problems: A Cognitive Load Theory Perspective. pp 436 – 444

https://doi.org/10.37626/GA9783959870641.0.34

Tall, David; Tall, Nic; Tall, Simon: Problem Posing in the Long-Term Conceptual Development of a Gifted Child. pp 445 – 457

https://doi.org/10.37626/GA9783959870641.0.35

Turnau, Stefan: Let´s learn to be surprised. pp 458 – 463

https://doi.org/10.37626/GA9783959870641.0.36

Vinner, Shlomo: My Hungarian Liasion. pp 464 – 472

https://doi.org/10.37626/GA9783959870641.0.37

Wittmann, Erich Ch.: Less research? Less research! Less mathematics? More Mathematics! pp 473 – 477

https://doi.org/10.37626/GA9783959870641.0.38